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Introduction 

It is often useful to use enumeration values as identifiers, however all enumerations are 
not equal. 

OpenGL uses weak-typed enumerations and arbitrary values where GLenum is nothing but 

an alias for unsigned int and all the constants are defines within a global scope. 

#define GL_FRAGMENT_SHADER 0x8B30 
#define GL_READ_ONLY 0x88B8 
#define GL_UNIFORM_BUFFER 0x8A11 
#define GL_TEXTURE_BASE_LEVEL 0x813C 
#define GL_UNSIGNED_INT_10F_11F_11F_REV 0x8C3B 

Example of OpenGL enumeration values. 

Such enumeration values are undesirable identifiers for many reasons:  
- It is very difficult to access data using such identifiers. 

- We can pass invalid values that result in runtime errors undetected at compile time. 
- They imply a graphics API specific dependence. 

- etc. 

In this article, we propose to use zero-based enumerations with translation 
tables allowing detecting at compilation time translation issues and providing constantly 

fast performance across multiple compilers, including Clang, GCC, Intel Compiler and 
Visual C++ tested for this article. 

To support this proposal we will work with code samples, building from our experiences 

with OpenGL to provide examples of concrete usage. We will also provide an analysis of 
generated assembly from compilers and performance results. 

  

https://github.com/Groovounet/cpp-experiments/blob/master/test_translation_table.cpp


1. Data accesses 

1.1. Using constants for accesses 

In this section we are going to study a typical use case where we want to use an identifier 
to access the programs of a graphics program pipeline in OpenGL. 

#define GL_VERTEX_SHADER 0x8B31 

#define GL_TESS_CONTROL_SHADER 0x8E88 

#define GL_TESS_EVALUATION_SHADER 0x8E87 

#define GL_GEOMETRY_SHADER 0x8DD9 

#define GL_FRAGMENT_SHADER 0x8B30 

Listing 1.1.1: OpenGL defines the following constants for the shader stages 

A native idea would be that we could use these constants to access the programs of a 
program pipeline. A first but not uncommon approach is to use a switch to return the 

matching OpenGL program name. 

GLuint getProgramName(GLenum Stage) const 

{ 

switch(Stage) 

{ 

case GL_VERTEX_SHADER: return this->VertProgramName; 

case GL_TESS_CONTROL_SHADER: return this->ContProgramName; 

case GL_TESS_EVALUATION_SHADER: return this->EvalProgramName; 

case GL_GEOMETRY_SHADER: return this->GeomProgramName; 

case GL_FRAGMENT_SHADER: return this->FragProgramName; 

default: 

assert(0); // Invalid value for 'Stage' 

return 0; 

} 

} 

Listing 1.1.2: Trivializing the programs accesses issue using a C++ switch 

The code shown is listing 1.1.2 is an abomination for the following reasons. 

- The function user may submit any integer input value, the compiler won’t complain. 
- Just looking at the prototype, the user can’t know that GL_COMPUTE_SHADER is not a valid 

value. 
- If the class adds support to GL_COMPUTE_SHADER, the compiler won’t help the programmer 

to update getProgramName by throwing a compiler time error. 

- The constants in listing 1.1.1 have a different semantic from the Stage input variable. 

- The code is inefficient, basically compiled into a series of if instructions.  
- The function performance is dependent of the Stage value. 

- The more values we add, the slower the function becomes. 
- The function generates a lot of CPU instructions most of which are never used, 

polluting the instruction cache and causing previous code in cache to be evicted. 
- Etc. 

Another very common solution but just as bad, is to design an over engineered solution 
based on a std::map.  

GLuint getProgramName(GLenum Stage) const 

{ 

std::map<GLenum, GLuint>::const_iterator it = this->ProgramNames.find(Stage); 

assert(it != this->ProgramNames.end()); // Invalid value for 'Stage' 

return it->second; 

https://www.opengl.org/registry/specs/ARB/separate_shader_objects.txt


} 

Listing 1.1.3: Over-engineering the solution with a std::map 

The aesthetic of this code may look better than the code in listing 1.1.2 but the code 
suffers the same issues and querying a program name is even a lot slower because we 

will suffer many cache misses jumping from node to node in the find function before 
returning the requested OpenGL program name. 

A common attitude with programmers is to blame the performance issue on std::map. This 
is missing the point entirely. We can write the fastest map ever, it will still be the wrong 

tool.  

1.2. Using indexes for accesses 

When we take the time to think about how with are going to access some data, we quickly 
figure out that the easiest, the most robust, and the most efficient way to access data is 

to index an array. 

Once we chose to access the data through a table we need to index that table and a zero-
based enumeration comes logically to mind for that purpose.  

enum stage 

{ 

STAGE_VERTEX = 0, 

STAGE_TESS_CONTROL, 

STAGE_TESS_EVALUATION, 

STAGE_GEOMETRY, 

STAGE_FRAGMENT 

}; 

 

GLuint GetProgramName(stage Stage) const 

{ 

return this->ProgramNames[Stage]; 

} 

Listing 1.2.1: Table access using a zero based enumeration 

Typically, the desire of reusing existing values is motivated by avoiding the duplication 
of values. However, as shown in listing 1.2.1, creating additional values is vastly superior. 

- The function user can only submit one of the enumeration values or the compiler will 

complain. 
- If the user submits ‘STAGE_COMPUTE’, the compiler will throw an error.  

- The code is efficient, basically compiled into addressing an array. 
- The function performance is independent from the Stage value. 

- The performance is roughly independent from the number of value in the 
enumeration.  
- The constants in listing 1.1.1 have a different semantic from the Stage input variable. 

- The function code is compact and entirely executed making good use of the CPU 

instruction cache. 

We can still improve the reliability of this code by adding a value to identify the number 
of elements in the stage enumeration. Using this value we can size the ProgramNames 

variable automatically when new enumerations are added. 



enum stage 

{ 

STAGE_VERTEX = 0, 

STAGE_TESS_CONTROL, 

STAGE_TESS_EVALUATION, 

STAGE_GEOMETRY, 

STAGE_FRAGMENT, 

STAGE_LAST = STAGE_FRAGMENT 

}; 

 

std::array<GLuint, STAGE_LAST + 1> ProgramNames; 

 

GLuint GetProgramName(stage Stage) const 

{ 

return this->ProgramNames[Stage]; 

} 

Listing 1.2.2: Automatically sized array following the number of enumeration values. 

An alternative to the stage definition in listing 1.2.2 is the stage definition in listing 1.2.3. 

However, listing 1.2.2 is more reliable because it doesn’t introduce an invalid index for 
ProgramNames. 

enum stage 

{ 

STAGE_VERTEX = 0, 

STAGE_TESS_CONTROL, 

STAGE_TESS_EVALUATION, 

STAGE_GEOMETRY, 

STAGE_FRAGMENT, 

STAGE_COUNT 

}; 

 

std::array<GLuint, STAGE_COUNT> ProgramNames; 

Listing 1.2.3: Alternative to listing 2.2 but that introduces an invalid value to the enumeration. 

  



2. Translations 

2.1. Definition 

A motivation to use existing enumerations for addressing data is that it we create a new 
and better fitting enumeration, then we will need to convert that new enumeration into 
the original enumeration or we will need to store both values. 

We call translation the conversion a set of identifiers to a different set of identifiers.  

Building on the OpenGL shaders example, listing 2.1.1 shows an instance of translation: 

STAGE_VERTEX => GL_VERTEX_SHADER 
STAGE_TESS_CONTROL => GL_TESS_CONTROL_SHADER 
STAGE_TESS_EVALUATION => GL_TESS_EVALUATION_SHADER 
STAGE_GEOMETRY => GL_GEOMETRY_SHADER 
STAGE_FRAGMENT => GL_FRAGMENT_SHADER 

Listing 2.1.1: An instance of translation. 

Performing this conversion in the other direction is still a translation even if it’s 
questionable: 

GL_VERTEX_SHADER => STAGE_VERTEX 
GL_TESS_CONTROL_SHADER => STAGE_TESS_CONTROL 
GL_TESS_EVALUATION_SHADER => STAGE_TESS_EVALUATION 
GL_GEOMETRY_SHADER => STAGE_GEOMETRY 
GL_FRAGMENT_SHADER => STAGE_FRAGMENT 

Listing 2.1.2: Reverse translation. 

We can also have multiple translations from a set of identifiers into N set of identifiers: 

STAGE_VERTEX => GL_VERTEX_SHADER_BIT 
STAGE_TESS_CONTROL => GL_TESS_CONTROL_SHADER_BIT 
STAGE_TESS_EVALUATION => GL_TESS_EVALUATION_SHADER_BIT 
STAGE_GEOMETRY => GL_GEOMETRY_SHADER_BIT 
STAGE_FRAGMENT => GL_FRAGMENT_SHADER_BIT 

Listing 2.1.3: Second translation from a unique enumeration. 

Properties: 
- Translations are surjection functions 

- Translations may be bijective functions 
- Multiple translation functions may be written for a set of identifiers as shown between 
listing 2.1.1 and 2.1.3. 

2.2. Translation implementations 

A first possible implementation is to build a special case of listing 1.1.2 to implement the 
translation. 

GLenum translate(stage Stage) 

{ 

switch(Stage) 

{ 



case STAGE_VERTEX: return GL_VERTEX_SHADER; 

case STAGE_TESS_CONTROL: return GL_TESS_CONTROL_SHADER; 

case STAGE_TESS_EVALUATION: return GL_TESS_EVALUATION_SHADER; 

case STAGE_GEOMETRY: return GL_GEOMETRY_SHADER; 

case STAGE_FRAGMENT: return GL_FRAGMENT_SHADER; 

} 

} 

Listing 2.2.1: Translation implementation based on switch. 

Looking at the assembly we see that the generated code for this function is particularly 
slow with a lot of jumps. Worse, the more values the enumerations contain, the longer 
and slower the code is going to be. Finally, the performance of a function depends on the 

input value because the code path will differ according to the input value. 

GLenum translate(stage Stage) 

{ 

static GLenum const Table[] = 

{ 

GL_VERTEX_SHADER,          // STAGE_VERTEX 

GL_TESS_CONTROL_SHADER,    // STAGE_TESS_CONTROL 

GL_TESS_EVALUATION_SHADER, // STAGE_TESS_EVALUATION 

GL_GEOMETRY_SHADER,        // STAGE_GEOMETRY 

GL_FRAGMENT_SHADER         // STAGE_FRAGMENT 

}; 

 

return Table[Stage]; 

} 

Listing 2.2.2: Translation implementation based on a static const table. 

  



3. Performances 

3.1. The tests 

To evaluate our solution, we use an automatic test available on Github based on 4 
different methods using enumerations containing between 4 to 128 enumeration values 
and multiple compilers: Visual Studio 2010, 2013 and 2015 preview; GCC 4.8.1; Intel 
Compiler 15; and Clang 3.5. The input set is generated ahead of measurement with 

pseudo random values including all the values of the input enumerations. Results are 
expressed in milliseconds on the ordinate axis. All the tests have been performed on a 
Haswell 4770K running Windows 7 64 bits. 

We are studying four translations implementations: 

 static table: This method is based on listing 2.2.2, indexing a table with a zero 

based enumeration. 

 const table: This implementation varies from the static table case by declaring the 

table const only instead of static const. 

 index switch: This method is based on listing 2.2.1, using a switch statement with a 

zero based enumeration. 

 value switch: This implementation varies from the index switch case by using 

constants instead of a zero based enumeration. 

3.2. Visual Studio 2013 initial results 

 

 
Graph 3.2.1: Visual Studio 2013 results 

On Visual Studio 2013, the most efficient method is the static table method. Not only it 
is always faster but the performance are independent from the number of values in the 

enumeration. 
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A first surprise is that only changing the declaration of the translation table from static 

const to const only makes a huge performance difference. We will get back to this case in 

section 4.1. 

A second surprise is that the index switch and value switch cases perform very differently 

as well and zero based enumeration turns out to be a lot slower. We will study this case 
in depth in section 4.2. 

3.3. More Visual Studio versions results 

In this section we propose to look at different version of Visual Studio to validate our 
results.  

 
Graph 3.3.1: Visual Studio 2010 results 

 
Graph 3.3.2: Visual Studio 2015 results 

Certainly, we observe some performance variations but the performance characteristics 
are the same. Actually, by disabling the security check, /GS-, we can get back to close 

performance level across all Visual Studio versions.  

We can conclude that these behaviors are not accidental and part of Visual Studio code 
debt and legacy. 
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3.4. Clang, GCC, Intel Compiler results 

 

 
Graph 3.4.1: Intel Compiler 2015 results 

 

 
Graph 3.4.2: GCC 4.8.1 results 

 

 
Graph 3.4.3: Clang 3.6.0 trunk results 
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A key observation from this article is that we can’t rely on all compilers to behave the 
same way. Actually, only the static const table implementation displays the same 

performance characteristic across compilers and equivalent performance levels. When 
considering performance, using a static const table implementation is the only valid 

choice. 

The const table implementation follows the same performance characteristics on GCC, ICC 
and Visual Studio. Only with Clang it behaves identically as the static const case which 

looking at the assembly we can confirm that both cases are compiled exactly the same 

way with Clang. 

Whether Clang behaviors is right or not, the generated code is by far fastest than any 
other compiler in this experiment. Actually, if all compilers were behaving the same way, 

we could conclude that performance is not a relevant criterion to implement a translation. 

However, the const table case, the index switch and the value switch are all performance 

cliff depending on the used compiler. 

 const table cliffs on GCC, ICC and Visual Studio. 

 index switch cliffs on Visual Studio but also all the compilers when the number of 

enumeration values is small. 

 value switch cliffs on GCC and is generally a bad performer. 

For performance, we need to implement translation using a static const table.  



4. Assembly analysis 

4.1. static const vs const translation table 

We observed in section 3 that declaring the translation table static const or const makes 

a huge difference.  

To attempt to understand this difference, an important factor to take into account is to 
understand the C++ semantic differences between static const and const. Anything 

declared static in C++ is nothing more than a global. Anything declared const is just 

another member of the function code. 

Logically, if the compiler follows the C++ semantic, when we use static const the data of 

this table is placed into a data segment which listing 4.1.2 confirms. However, when we 
use const only then the table data is supposed to remain with the instruction code, which 

effectively happens with Visual C++ 2013 as shown in listing 4.1.4. 

translated static_table_translate(index Index) 

{ 

 static translated const Table[] = 

 { 

  TRANSLATED_A,  // INDEX_A 

  TRANSLATED_B,  // INDEX_B 

  TRANSLATED_C,  // INDEX_C 

  TRANSLATED_D  // INDEX_D 

 }; 

 

 static_assert( 

sizeof(Table) / sizeof(translated) == INDEX_COUNT, 

"The translation table needs to be updated."); 

 assert(Index < INDEX_COUNT); 

 

 return Table[Index]; 

} 

Listing 4.1.1: Compare the enumeration and the implicitly sized array sizes in a static assert to make sure 
the translation table handles all cases. 
 
Index$ = 8 

?static_table_translate@translation4@@YA?AW4translated@1@W4index@1@@Z PROC ; 

translation4::static_table_translate, COMDAT 

 

; 51   :   static const translated Table[] = 

; 52   :   { 

; 53   :    TRANSLATED_A,  // INDEX_A 

; 54   :    TRANSLATED_B,  // INDEX_B 

; 55   :    TRANSLATED_C,  // INDEX_C 

; 56   :    TRANSLATED_D  // INDEX_D 

; 57   :   }; 

; 58   :  

; 59   :   static_assert(sizeof(Table) / sizeof(translated) == INDEX_COUNT, 

"The translation table needs to be updated."); 

; 60   :   assert(Index < INDEX_COUNT); 

; 61   :  

; 62   :   return Table[Index]; 

 

 movsxd rax, ecx 

 lea rcx, OFFSET 

FLAT:?Table@?1??static_table_translate@translation4@@YA?AW4translated@2@W4index@2@@Z@4QBW

432@B 



 mov eax, DWORD PTR [rcx+rax*4] 

 

; 63   :  } 

 

 ret 0 

?static_table_translate@translation4@@YA?AW4translated@1@W4index@1@@Z ENDP ; 

translation4::static_table_translate 

Listing 4.1.2: Visual C++ 2013 assembly of a translation function based on a const table. 
 
translated const_table_translate(index Index) 

{ 

 translated const Table[] = 

 { 

  TRANSLATED_A,  // INDEX_A 

  TRANSLATED_B,  // INDEX_B 

  TRANSLATED_C,  // INDEX_C 

  TRANSLATED_D  // INDEX_D 

 }; 

 

 static_assert( 

sizeof(Table) / sizeof(translated) == INDEX_COUNT, 

"The translation table needs to be updated."); 

 assert(Index < INDEX_COUNT); 

 

 return Table[Index]; 

} 

Listing 4.1.3: Compare the enumeration and the implicitly sized array sizes in a static assert to make sure 
the translation table handles all cases. 
 
Index$ = 48 

?const_table_translate@translation4@@YA?AW4translated@1@W4index@1@@Z PROC ; 

translation4::const_table_translate, COMDAT 

 

; 34   :  { 

 

$LN4: 

 sub rsp, 40     ; 00000028H 

 mov rax, QWORD PTR __security_cookie 

 xor rax, rsp 

 mov QWORD PTR __$ArrayPad$[rsp], rax 

 movdqa xmm0, XMMWORD PTR __xmm@00008aef00002c35000001c20000a0e7 

 

; 35   :   const translated Table[] = 

; 36   :   { 

; 37   :    TRANSLATED_A,  // INDEX_A 

; 38   :    TRANSLATED_B,  // INDEX_B 

; 39   :    TRANSLATED_C,  // INDEX_C 

; 40   :    TRANSLATED_D  // INDEX_D 

; 41   :   }; 

; 42   :  

; 43   :   static_assert(sizeof(Table) / sizeof(translated) == INDEX_COUNT, 

"The translation table needs to be updated."); 

; 44   :   assert(Index < INDEX_COUNT); 

; 45   :  

; 46   :   return Table[Index]; 

 

 movsxd rax, ecx 

 movdqu XMMWORD PTR Table$[rsp], xmm0 

 mov eax, DWORD PTR Table$[rsp+rax*4] 

 

; 47   :  } 

 

 mov rcx, QWORD PTR __$ArrayPad$[rsp] 

 xor rcx, rsp 

 call __security_check_cookie 



 add rsp, 40     ; 00000028H 

 ret 0 

?const_table_translate@translation4@@YA?AW4translated@1@W4index@1@@Z ENDP ; 

translation4::const_table_translate 

Listing 4.1.4: Visual C++ 2013 assembly of a translation function based on a const table. 

As a result despite changing a single C++ key word, the assembly is really different 
because the logic is actually different too. 

Reading listing 4.1.4, we realize that the const implementation is done relying on 

constants folding. The compiler is filling XMM registers with constants which is fine but it 

requires a complex instruction logic to access each constants. 

When we enter a function there will be a stack allocation big enough so that all the 
variables in it could fit there. An additional issue with translation table declared const is 

that the function might get bigger so it will consume more CPU instructions cache, hence 
evicting more code resulting in more instruction cache misses. 

Using static const is choosing to fight against instructions cache evictions. With static, 

the table goes into a data segment so effectively the function remains compact and evict 
less. The downside is that we may cache miss twice. Once on the function call (in the L1 
instruction cache) and once on the table fetch (in L1 data cache). 

We may be able to consider that it is fine to add pressure on the data cache in random 
plumbing code which is less likely to be very busy here while it is super busy in optimized 
data transformation code. 

It could be tempting to jump into conclusions and assume that we should declare any 
constant static const. This is drawing conclusions too quickly! Modern processors (both 
CPUs and GPUs) make use of constants folding and it’s typically a great strategy as long 

as the constants are not indexed. 

For example, Haswell CPUs optimize throughput for constant folding: 
- MOVAPS/D xmm, xmm latency: 1 throughput: 1 

- MOVAPS/D xmm, m128 latency: 3 throughput: 0.5 

4.2. Value switch vs index switch 

In section 3, we identified that value switch and index switch translation implementations 
were behaving very differently in an unexpected manner with Visual Studio as the index 

switch implementation is a lot slower. 

translated index_switch_translate(index Index) 

{ 

switch(Index) 

{ 

case INDEX_A: return TRANSLATED_A; 

case INDEX_B: return TRANSLATED_B; 

case INDEX_C: return TRANSLATED_C; 

case INDEX_D: return TRANSLATED_D; 

} 

} 

Listing 4.2.1: Compare the enumeration and the implicitly sized array sizes in a static assert to make sure 
the translation table handles all cases. 



 
Index$ = 8 

?index_switch_translate@translation4@@YA?AW4translated@1@W4index@1@@Z PROC ; 

translation4::index_switch_translate, COMDAT 

 

; 100  :   switch(Index) 

 test ecx, ecx 

 je SHORT $LN4@index_swit 

 dec ecx 

 je SHORT $LN3@index_swit 

 dec ecx 

 je SHORT $LN2@index_swit 

 dec ecx 

 jne SHORT $LN5@index_swit 

 

; 105  :   case INDEX_D: return TRANSLATED_D; 

 mov eax, 35567    ; 00008aefH 

 

; 106  :   } 

; 107  :  } 

 ret 0 

$LN2@index_swit: 

 

; 104  :   case INDEX_C: return TRANSLATED_C; 

 mov eax, 11317    ; 00002c35H 

 

; 106  :   } 

; 107  :  } 

 ret 0 

$LN3@index_swit: 

 

; 103  :   case INDEX_B: return TRANSLATED_B; 

 mov eax, 450    ; 000001c2H 

 

; 106  :   } 

; 107  :  } 

 ret 0 

$LN4@index_swit: 

 

; 101  :   { 

; 102  :   case INDEX_A: return TRANSLATED_A; 

 mov eax, 41191    ; 0000a0e7H 

$LN5@index_swit: 

 

; 106  :   } 

; 107  :  } 

 ret 0 

?index_switch_translate@translation4@@YA?AW4translated@1@W4index@1@@Z ENDP ; 

translation4::index_switch_translate 

Listing 4.2.2: Compare the enumeration and the implicitly sized array sizes in a static assert to make sure 
the translation table handles all cases. 
 
index value_switch_translate(translated Value) 

{ 

switch(Value) 

{ 

case TRANSLATED_A: return INDEX_A; 

case TRANSLATED_B: return INDEX_B; 

case TRANSLATED_C: return INDEX_C; 

case TRANSLATED_D: return INDEX_D; 

} 

} 

Listing 4.2.3: Compare the enumeration and the implicitly sized array sizes in a static assert to make sure 
the translation table handles all cases. 



 
Value$ = 8 

?value_switch_translate@translation4@@YA?AW4index@1@W4translated@1@@Z PROC ; 

translation4::value_switch_translate, COMDAT 

 

; 111  :   switch(Value) 

 cmp ecx, 450    ; 000001c2H 

 je SHORT $LN3@value_swit 

 cmp ecx, 11317    ; 00002c35H 

 je SHORT $LN2@value_swit 

 cmp ecx, 35567    ; 00008aefH 

 je SHORT $LN1@value_swit 

 cmp ecx, 41191    ; 0000a0e7H 

 jne SHORT $LN5@value_swit 

 

; 112  :   { 

; 113  :   case TRANSLATED_A: return INDEX_A; 

 xor eax, eax 

 

; 117  :   } 

; 118  :  } 

 ret 0 

$LN1@value_swit: 

 

; 116  :   case TRANSLATED_D: return INDEX_D; 

 mov eax, 3 

 

; 117  :   } 

; 118  :  } 

 ret 0 

$LN2@value_swit: 

 

; 115  :   case TRANSLATED_C: return INDEX_C; 

 mov eax, 2 

 

; 117  :   } 

; 118  :  } 

 ret 0 

$LN3@value_swit: 

 

; 114  :   case TRANSLATED_B: return INDEX_B; 

 mov eax, 1 

$LN5@value_swit: 

 

; 117  :   } 

; 118  :  } 

 ret 0 

?value_switch_translate@translation4@@YA?AW4index@1@W4translated@1@@Z ENDP ; 

translation4::value_switch_translate 

Listing 4.2.4: Compare the enumeration and the implicitly sized array sizes in a static assert to make sure 
the translation table handles all cases. 

Listing 4.2.2 and 4.2.4 shows that Visual Studio implements the switch statement very 
similarly. First we have section of code testing which case we are at and then we have a 
section of code handling either case. The junction between the two sections is made using 

a jump instruction. 

In fact, the only difference is in the testing section as highlighted in listing 4.2.5. 

; index switch 

 test ecx, ecx    ; latency:1 thoughtput:0.25  

 je SHORT $LN4@index_swit 

 dec ecx     ; latency:6 thoughtput:1 



 je SHORT $LN3@index_swit 

 dec ecx     ; latency:6 thoughtput:1 

 je SHORT $LN2@index_swit 

 dec ecx     ; latency:6 thoughtput:1 

 jne SHORT $LN5@index_swit 

 

; value switch 

 cmp ecx, 450    ; latency:1 thoughtput:0.25 

 je SHORT $LN3@value_swit 

 cmp ecx, 11317    ; latency:1 thoughtput:0.25 

 je SHORT $LN2@value_swit 

 cmp ecx, 35567    ; latency:1 thoughtput:0.25 

 je SHORT $LN1@value_swit 

 cmp ecx, 41191    ; latency:1 thoughtput:0.25 

 jne SHORT $LN5@value_swit 

Listing 4.2.5: Test assembly for value switch and index switch with latencies and throughput on Haswell 

Looking at Agner’s instruction table for Haswell, we see that the code may look like the 
same but the latencies and throughputs are very different. Furthermore, the assembly 
generated for index switch has a result dependency chain on ecx which makes it unfriendly 

for instructions parallelism.   

  

http://www.agner.org/optimize/instruction_tables.pdf


5. Translation table robustness 

5.1. Detecting the addition or removal of enumeration values at compilation time 

One common bug with OpenGL is that the API evolves and the software follows this 
evolution. For example, new shader stages and new texture formats have been added to 
OpenGL. 

When implementing these changes a first step is to add a new entry in the associated 

software zero-based enumeration. This change implies that everywhere this enumeration 
is used; we introduced a runtime bug where the new entry is not correctly handle. 

With translation tables, a solution is to generate compile time errors everywhere this 
modified enumeration is used. This is accomplished thanks to static_assert and implicitly 

sized arrays. 

enum stage 

{ 

STAGE_VERTEX = 0, 

STAGE_TESS_CONTROL, 

STAGE_TESS_EVALUATION, 

STAGE_GEOMETRY, 

STAGE_FRAGMENT, 

STAGE_LAST = STAGE_FRAGMENT 

}; 

 

GLenum translate(stage Stage) 

{ 

static GLenum const Table[] = // Don’t set a size to be sure it’s implicitly 

sized. 

{ 

GL_VERTEX_SHADER,          // STAGE_VERTEX 

GL_TESS_CONTROL_SHADER,    // STAGE_TESS_CONTROL 

GL_TESS_EVALUATION_SHADER, // STAGE_TESS_EVALUATION 

GL_GEOMETRY_SHADER,        // STAGE_GEOMETRY 

GL_FRAGMENT_SHADER         // STAGE_FRAGMENT 

}; 

 

static_assert( 

sizeof(Table) / sizeof(GLenum) == STAGE_LAST + 1, 

"OPENGL ERROR: The translation table for 'stage' needs to be updated."); 

 

return Table[Stage]; 

}; 

Listing 5.1.1: Compare the enumeration and the implicitly sized array sizes in a static assert to make sure 
the translation table handles all cases. 

One issue with this design is that it may happen that a change will remove an 

enumeration value and add a new one at the same time. With OpenGL it’s not a common 
case but translation tables have a larger scope. 

5 2. Detecting translation runtime input errors 

It is often useful to introduce an invalid value to an enumeration to avoid using a valid 
value as an invalid value that would be misleading. 

enum stage 



{ 

STAGE_INVALID = -1, 

STAGE_VERTEX = 0, 

STAGE_TESS_CONTROL, 

STAGE_TESS_EVALUATION, 

STAGE_GEOMETRY, 

STAGE_FRAGMENT, 

STAGE_LAST = STAGE_FRAGMENT 

}; 

 

class programPoll 

{ 

struct program 

{ 

GLuint Name; 

stage Stage; 

… 

}; 

 

std::vector<program> Polls; 

 

void release(std::size_t ProgramIndex) 

{ 

assert(ProgramIndex < this->Polls.size()); 

program & Program = this->Polls[]; 

glDeletePrograms(1, &Program.Name); 

Program.Name = 0; 

Program.Stage = STAGE_INVALID; 

} 

}; 

Listing 5.2.1: Example of usage of an explicit invalid enumeration value. 

An argument against this idea is that in listing 5.2.1, we could rely on Program.Name to be 

equal to zero to detect invalid cases. This is overloading the semantic of zero for a 
program name with an additional semantic. In fact, with OpenGL compatibility profile, 

zero is a perfectly valid program name that enables the fixed function pipeline. Hence, 
using an explicit invalid value makes the code easier to understand. 

A good invalid value is -1 which is equivalent to 0xFFFFFFFF in hexadecimal. First, it’s the 

last possible value in an enumeration so the entire range remains available. Second, 
when working with zero based enumeration, it’s conceptually an invalid value. This 

property makes it likely to fail, generate an error, throw an assert or crash when 
incorrectly used which is exactly what we should look for an invalid value so that we can 
detect the problem early. 

GLuint GetProgramName(stage Stage) const 

{ 

assert(Stage != STAGE_INVALID); 

return this->ProgramNames[Stage]; 

} 

Listing 5.2.2: Table access using a zero based enumeration 

In listing 5.2.2, in debug build we will fail on assert if we use an invalid value. In release 
build, it’s very likely that we violently crash on ProgramNames access: This is a good thing! 

If we didn’t had an invalid value, then Stage would necessarily be a valid value and the 
program would fail down later in the code execution or worse it would not fail which 

makes fixing bugs a lot harder.  

enum stage 

{ 



STAGE_INVALID = -1, 

STAGE_VERTEX = 0, 

STAGE_TESS_CONTROL, 

STAGE_TESS_EVALUATION, 

STAGE_GEOMETRY, 

STAGE_FRAGMENT, 

STAGE_LAST = STAGE_FRAGMENT 

}; 

 

GLenum translate(stage Stage) 

{ 

static GLenum const Table[] =  

{ 

GL_VERTEX_SHADER,           // STAGE_VERTEX 

GL_TESS_CONTROL_SHADER,     // STAGE_TESS_CONTROL 

GL_TESS_EVALUATION_SHADER,  // STAGE_TESS_EVALUATION 

GL_GEOMETRY_SHADER,         // STAGE_GEOMETRY 

GL_FRAGMENT_SHADER,         // STAGE_FRAGMENT 

}; 

 

static_assert( 

sizeof(Table) / sizeof(GLenum) == STAGE_LAST + 1, 

“OPENGL ERROR: The translation table for ‘stage’ needs to be updated.”); 

 

assert(Stage != STAGE_INVALID); // OpenGL ERROR: Invalid Stage value 

return Table[Stage]; 

}; 

Listing 5.2.3: Failing on an invalid value in a translation.  

5 3. Limiting the translation range 

It is possible that a zero-based enumeration is going to be used for multiple contexts but 
the contexts vary enough that not all the values would be valid for all contexts. 

A first possibility is to create separated zero-based enumerations per context but this 
idea requires additional translation between zero-based enumerations.  

An alternative is to mark ranges within the enumerations using _FIRST and _LAST 

enumeration value aliases as shown in listing 5.3.1. 

enum stage 

{ 

STAGE_COMPUTE = 0, 

STAGE_VERTEX, 

STAGE_GFX_FIRST = STAGE_VERTEX 

STAGE_TESS_CONTROL, 

STAGE_TESS_EVALUATION, 

STAGE_GEOMETRY, 

STAGE_FRAGMENT, 

STAGE_GFX_LAST = STAGE_FRAGMENT 

}; 

 

GLenum translateGraphicsStage(stage Stage) 

{ 

static GLenum const Table[] =  

{ 

GL_VERTEX_SHADER,          // STAGE_VERTEX 

GL_TESS_CONTROL_SHADER,    // STAGE_TESS_CONTROL 

GL_TESS_EVALUATION_SHADER, // STAGE_TESS_EVALUATION 

GL_GEOMETRY_SHADER,        // STAGE_GEOMETRY 

GL_FRAGMENT_SHADER,        // STAGE_FRAGMENT 

}; 



 

static_assert( 

sizeof(Table) / sizeof(GLenum) == STAGE_GFX_LAST - STAGE_GFX_FIRST + 1, 

“OPENGL ERROR: The translation table for ‘stage’ needs to be updated.”); 

 

// OpenGL ERROR: Invalid range for Stage value 

assert(Stage >= STAGE_GFX_FIRST && Stage <= STAGE_GFX_LAST);  

 

return Table[Stage - STAGE_GFX_FIRST]; 

}; 

Listing 5.3.1: Limiting the valid range of a zero based enumeration. 

An additional value for this design in the example listing 5.3.1 is that if OpenGL adds a 

new graphics shader stage on the future, then almost all the code will remain correct, 
arrays will scale automatically to the correct size and the compile will fail on the 
static_assert showing what code needs to be updated. 

  



6. Extending translation table functionality for runtime decisions 

6.1. Baking translation tables at runtime 

A nice and pretty compile time static const table is just not a solution that is going to fit 

all scenarios. It should be the default solution to choose but in many scenarios, it’s just 
not flexible enough. 

For instance, a real life scenario is that we would want to use the same code base for 
OpenGL and OpenGL ES but while OpenGL 4.5 supports tessellation and geometry shader 
stages, OpenGL ES 3.1 doesn’t. Listing 6.1.1 shows a native implementation to support 

this behavior. 

enum stage 

{ 

STAGE_VERTEX = 0, 

STAGE_TESS_CONTROL, 

STAGE_TESS_EVALUATION, 

STAGE_GEOMETRY, 

STAGE_FRAGMENT, 

STAGE_LAST = STAGE_FRAGMENT 

}; 

 

// Making an initialization time decision in the rendering loop 

GLenum translate(stage Stage, bool IsProfileES) 

{ 

static GLenum const Table[] =  

{ 

GL_VERTEX_SHADER,                                // STAGE_VERTEX 

ProfileES ? GL_NONE : GL_TESS_CONTROL_SHADER,    // STAGE_TESS_CONTROL 

ProfileES ? GL_NONE : GL_TESS_EVALUATION_SHADER, // STAGE_TESS_EVALUATION 

ProfileES ? GL_NONE : GL_GEOMETRY_SHADER,        // STAGE_GEOMETRY 

GL_FRAGMENT_SHADER                               // STAGE_FRAGMENT 

}; 

 

static_assert( 

sizeof(Table) / sizeof(GLenum) == STAGE_LAST + 1, 

“OPENGL ERROR: The translation table for ‘stage’ needs to be updated.”); 

 

return Table[Stage]; 

}; 

Listing 6.1.1: Compare the enumeration and the implicitly sized array sizes in a static assert to make sure 
the translation table handles all cases. 

Listing 6.1.1 illustrates a bad practice: In this OpenGL scenario, translations are going to 
happen in the rendering loop when precisely we need to most performance. Adding the 
ProfileES parameter implies cost in the rendering loop despite this decision being made 

during the OpenGL context creation. An alternative is to bake the translation table at 
initialization time, in this scenario, right after creating the OpenGL context.  

GLenum translate(std::array<GLenum, LAST_SHADER + 1> const & Table, stage Stage) 

{ 

return Table[Stage]; 

}; 

Listing 6.1.2: Example translation using a runtime baked table 

In listing 6.1.2, we pass the translation table through a parameter but the source of table 
doesn’t really matter. We measured no performance difference between using an 



std::array or a static const implicitly sized array on all compilers. At the assembly level, 

in all cases accessing the table is passing a memory address. 

6 2. Detecting translation runtime output errors 

As soon as we introduce runtime decisions for translation table creation, we may output 
invalid values. In listing 6.2.1, the output of the translation is checked using 
assert(Translated != GL_NONE) allowing to detect issues as early as possible. 

enum stage 

{ 

STAGE_VERTEX = 0, 

STAGE_TESS_CONTROL, 

STAGE_TESS_EVALUATION, 

STAGE_GEOMETRY, 

STAGE_FRAGMENT, 

STAGE_LAST = STAGE_FRAGMENT 

}; 

 

GLenum translate(std::array<GLenum, LAST_SHADER + 1> const & Table, stage Stage) 

{ 

GLenum const Translated = Table[Stage]; 

assert(Translated != GL_NONE); // OpenGL ERROR: Invalid output enum value 

return Translated; 

}; 

Listing 6.2.1: Compare the enumeration and the implicitly sized array sizes in a static assert to make sure 
the translation table handles all cases. 

In listing 6.2.1, we notice that we lost the static_assert hence the capability to check that 

the translation table is up to date with the zero base enumeration. We can rescue this 
capability by moving it at the translation table initialization as shown in listing 6.2.2. 

void init(std::array<GLenum, LAST_SHADER + 1> & Dest, bool IsProfileES) 

{ 

static GLenum const Table[] =  

{ 

GL_VERTEX_SHADER,                                // STAGE_VERTEX 

ProfileES ? GL_NONE : GL_TESS_CONTROL_SHADER,    // STAGE_TESS_CONTROL 

ProfileES ? GL_NONE : GL_TESS_EVALUATION_SHADER, // STAGE_TESS_EVALUATION 

ProfileES ? GL_NONE : GL_GEOMETRY_SHADER,        // STAGE_GEOMETRY 

GL_FRAGMENT_SHADER                               // STAGE_FRAGMENT 

}; 

 

static_assert( 

sizeof(Table) / sizeof(GLenum) == STAGE_LAST + 1, 

“OPENGL ERROR: The translation table for ‘stage’ needs to be updated.”); 

 

memcpy(&Dest[0], &Table, sizeof(Table)); 

 

return Table[Stage]; 

}; 

Listing 6.2.2: Compare the enumeration and the implicitly sized array sizes in a static assert to make sure 
the translation table handles all cases. 

  



7. Faster than the fastest translation: no translation 

It happens that we write complex functions with multiple code paths where only one path 
is executed despite that branch being decided at compilation time as shown in listing 7.1. 

enum target 

{ 

UNIFORM_BUFFER, 

SHADER_STORAGE_BUFFER, 

TRANSFORM_FEEDBACK_BUFFER, 

TARGET_LAST = TRANSFORM_FEEDBACK_BUFFER 

}; 

 

void bindBuffer(target Target, GLuint Unit, GLuint Buffer) 

{ 

switch(Target) 

{ 

case UNIFORM_BUFFER: 

assert(Unit < this->UniformBufferBound.size()); 

if(this->UniformBufferBound[Unit] == Buffer) 

return; 

this->UniformBufferBound[Unit] = Buffer; 

break; 

case SHADER_STORAGE_BUFFER: 

assert(Unit < this->ShaderStorageBufferBound.size()); 

if(this->ShaderStorageBufferBound[Unit] == Buffer) 

return; 

this->ShaderStorageBufferBound[Unit] = Buffer; 

break; 

case TRANSFORM_FEEDBACK_BUFFER: 

assert(Unit < this->TransformFeedbackBufferBound.size()); 

if(this->TransformFeedbackBufferBound[Unit] == Buffer) 

return; 

this->TransformFeedbackBufferBound[Unit] = Buffer; 

break; 

} 

 

glBindBufferBase(translate(Target), Unit, Buffer); 

} 

 

void foo() 

{ 

... 

for(GLuint i = 0; i < Buffers.size(); ++i) 

bindBuffer(UNIFORM_BUFFER, i, Buffers[i]); 

... 

} 

Listing 7.1: Example of useless last minute runtime decision 

Issues: 

 Each time we call bindBuffer, the function code is fetched in the CPU L1 instruction cache 

causing the eviction of the oldest code and a potential code cache miss. However, it's very 

possible that the rendering code will never use shader storage buffer or transform feedback 

buffer so fetching such code is pure instruction cache pollution. 

 This code design require a switch, hence an expensive runtime decision while really the 

decision is taken in the foo function code already. 

 Exposing API dependent code (GL_UNIFORM_BUFFER) is ugly as it makes the API less reusable. 



We can create dedicated functions per code paths avoiding CPU L1 instruction cache 
pollution and avoiding runtime decisions as illustrated in listing 7.2. 

void bindUniformBuffer(std::size_t Unit, std::uint32_t Buffer); 

{ 

assert(Unit < this->UniformBufferBound.size()); 

 

if(this->UniformBufferBound[Unit] == Buffer) 

return; 

this->UniformBufferBound[Unit] = Buffer; 

 

glBindBufferBase(GL_UNIFORM_BUFFER, 

static_cast<GLuint>(Unit), static_cast<GLuint>(Buffer)); 

} 

 

void bindShaderStorageBuffer(std::size_t Unit, std::uint32_t Buffer); 

{ 

assert(Unit < this-> ShaderStorageBufferBound.size()); 

 

if(this->ShaderStorageBufferBound[Unit] == Buffer) 

return; 

this->ShaderStorageBufferBound[Unit] = Buffer; 

 

glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 

static_cast<GLuint>(Unit), static_cast<GLuint>(Buffer)); 

} 

 

void bindTransformFeedbackBuffer(std::size_t Unit, std::uint32_t Buffer); 

{ 

assert(Unit < this-> TransformFeedbackBufferBound.size()); 

 

if(this->TransformFeedbackBufferBound[Unit] == Buffer) 

return; 

this->TransformFeedbackBufferBound[Unit] = Buffer; 

 

glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 

static_cast<GLuint>(Unit), static_cast<GLuint>(Buffer)); 

} 

 

void foo() 

{ 

... 

for(std::size_t i = 0; i < Buffers.size(); ++i) 

bindUniformBuffer(i, Buffers[i]); 

... 

} 

Listing 7.2: Using the code context to avoid translation 

Typically, when the result of the translation could be determine at compilation time or 
should be optimized by the compiler then translation is the wrong tool to resolve the 

problem. 

Tip: Consider inlining! Not only inline may remove the function calls but by making the 
functions smaller, they become better candidates for inlining.  



Conclusions 

It is always pretty hard to conclude without falling into excessive generalizations. 

Nevertheless, translation using table with a zero-based enumeration is a solid base to 
build robust code failing early and providing constant cross-compiler and execution 

performances. 

As discussed in this article, a lot of tweaks are possible to the basic implementation to 
adapt it to specific scenarios and keep constant performances and ensure robustness in 

code context. 

enum stage 

{ 

STAGE_VERTEX = 0, 

STAGE_TESS_CONTROL, 

STAGE_TESS_EVALUATION, 

STAGE_GEOMETRY, 

STAGE_FRAGMENT, 

STAGE_LAST = FRAGMENT 

}; 

 

GLenum translate(stage Stage) 

{ 

static GLenum const Table[] =  

{ 

GL_VERTEX_SHADER,            // STAGE_VERTEX 

GL_TESS_CONTROL_SHADER,      // STAGE_TESS_CONTROL 

GL_TESS_EVALUATION_SHADER,   // STAGE_TESS_EVALUATION 

GL_GEOMETRY_SHADER,          // STAGE_GEOMETRY 

GL_FRAGMENT_SHADER,          // STAGE_FRAGMENT 

}; 

 

static_assert( 

sizeof(Table) / sizeof(GLenum) == STAGE_LAST - STAGE_FIRST + 1, 

“OPENGL ERROR: The translation table for ‘stage’ needs to be updated.”); 

 

return Table[Stage]; 

}; 

Basic translation implementation using a table and a zero-based enumeration. 

In OpenGL alone, there is a lot of use cases for translations: Texture formats, texture 
targets, sampler filtering, sampler wrapping, buffer usages, stencil operations, blend 
operations, cull modes, vertex attribute formats, primitive types, etc. 

Obviously, translations are not limited to OpenGL and they have many more use cases; 
future work that we leave for our imaginations. 

Special thanks to Stephanie Hurlburt for the review of this article. 

 
 
 
 
 

Simplicity is the ultimate sophistication. 
Leonardo Da Vinci 

https://github.com/g-truc/gli/blob/translation/gli/core/storage.inl#L163
https://twitter.com/sehurlburt

